The evolutionarily conserved hif-1/bnip3 pathway promotes mitophagy and mitochondrial fission in crustacean testes during hypoxia.

American journal of physiology. Regulatory, integrative and comparative physiology(2022)

引用 1|浏览0
暂无评分
摘要
The hypoxia-inducible factor 1 (HIF-1) cascade is an ancient and strongly evolutionarily conserved signaling pathway that is involved in the hypoxic responses of most metazoans. Despite immense advances in the understanding of the HIF-1-mediated regulation of hypoxic responses in mammals, the contribution of the hif-1 cascade in the hypoxic adaptation of nonmodel invertebrates remains unclear. In this study, we used the oriental river prawn Macrobrachium nipponense for investigating the roles of hif-1-regulated mitophagy in crustacean testes under hypoxic conditions. We identified that the Bcl-2/adenovirus E1B 19-kDa interacting protein (bnip3) functions as a regulator of mitophagy in M. nipponense and demonstrated that hif-1α activates bnip3 by binding to the bnip3 promoter. Hif-1α knockdown suppressed the expression of multiple mitophagy-related genes, and prawns with hif-1α knockdown exhibited higher mortality under hypoxic conditions. We observed that the levels of BNIP3 were induced under hypoxic conditions and detected that bnip3 knockdown inhibited the mitochondrial translocation of dynamin-related protein 1 (drp1), which is associated with mitochondrial fission. Notably, bnip3 knockdown inhibited hypoxia-induced mitophagy and aggravated the deleterious effects of hypoxia-induced reactive oxygen species (ROS) production and apoptosis. The experimental studies demonstrated that hypoxia induced mitochondrial fission in M. nipponense via drp1. Altogether, the study elucidated the mechanism underlying hif-1/bnip3-mediated mitochondrial fission and mitophagy and demonstrated that this pathway protects crustaceans against ROS production and apoptosis induced by acute hypoxia.
更多
查看译文
关键词
bnip3,crustaceans,hypoxia,hypoxia-inducible factor 1α,mitophagy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要