Defect Detection of MEMS Based on Data Augmentation, WGAN-DIV-DC, and a YOLOv5 Model

SENSORS(2022)

引用 1|浏览0
暂无评分
摘要
Surface defect detection of micro-electromechanical system (MEMS) acoustic thin film plays a crucial role in MEMS device inspection and quality control. The performances of deep learning object detection models are significantly affected by the number of samples in the training dataset. However, it is difficult to collect enough defect samples during production. In this paper, an improved YOLOv5 model was used to detect MEMS defects in real time. Mosaic and one more prediction head were added into the YOLOv5 baseline model to improve the feature extraction capability. Moreover, Wasserstein divergence for generative adversarial networks with deep convolutional structure (WGAN-DIV-DC) was proposed to expand the number of defect samples and to make the training samples more diverse, which improved the detection accuracy of the YOLOv5 model. The optimal detection model achieved 0.901 mAP, 0.856 F1 score, and a real-time speed of 75.1 FPS. As compared with the baseline model trained using a non-augmented dataset, the mAP and F1 score of the optimal detection model increased by 8.16% and 6.73%, respectively. This defect detection model would provide significant convenience during MEMS production.
更多
查看译文
关键词
defect detection,MEMS,data augmentation,GAN,YOLOv5
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要