Design and Optimization of an alpha-Helical Bundle Dimer Cell- Penetrating Peptide for In Vivo Drug Delivery

Bioconjugate chemistry(2022)

引用 1|浏览2
暂无评分
摘要
To deliver membrane-impermeable drugs into eukaryotic cells, a lot of cell-penetrating peptides (CPPs) were discovered. Previously we designed an amphipathic alpha-helical peptide which dimerizes itself via its two C-residues. This bis-disulfide-linked dimeric bundle, LK-3, has remarkable cell-penetrating ability at nanomolar concentration, which is an essential prerequisite for CPP. In an effort to optimize the sequence of LK-3, we adjusted its length and evaluated changes in the dimerization rate. We found that a 10-amino-acid monomer has the fastest dimerization rate and subsequently modified its hydrophobic and hydrophilic residues to construct a small peptide library. The evaluation of cell permeability of these derivatives showed that their cell-penetrating ability is comparable to that of the LK-3, except V-or H-containing ones. In this library, diLR10 was found to display fast nanomolar cell membrane penetration, low toxicity, and ease of production. The methotrexate (MTX) conjugate of diLR10, MTX-diLR10, has a 19-fold increased efficacy over MTX in MDA-MB-231 cells and efficiently deflates lesions in a rheumatoid arthritis (RA) in vivo mouse model.
更多
查看译文
关键词
peptide,drug delivery,cell-penetrating
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要