Theory of topological defects and textures in two-dimensional quantum orders with spontaneous symmetry breaking

Physical Review B(2022)

引用 0|浏览9
暂无评分
摘要
We consider two-dimensional (2d) quantum many-body systems with long-range orders, where the only gapless excitations in the spectrum are Goldstone modes of spontaneously broken continuous symmetries. To understand the interplay between classical long-range order of local order parameters and quantum order of long-range entanglement in the ground states, we study the topological point defects and textures of order parameters in such systems. We show that the universal properties of point defects and textures are determined by the remnant symmetry enriched topological order in the symmetry-breaking ground states with a non-fluctuating order parameter, and provide a classification for their properties based on the inflation-restriction exact sequence. We highlight a few phenomena revealed by our theory framework. First, in the absence of intrinsic topological orders, we show a connection between the symmetry properties of point defects and textures to deconfined quantum criticality. Second, when the symmetry-breaking ground state have intrinsic topological orders, we show that the point defects can permute different anyons when braided around. They can also obey projective fusion rules in the sense that multiple vortices can fuse into an Abelian anyon, a phenomena for which we coin "defect fractionalization". Finally, we provide a formula to compute the fractional statistics and fractional quantum numbers carried by textures (skyrmions) in Abelian topological orders.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要