Holistic Visual-Textual Sentiment Analysis with Prior Models

Junyu Chen,Jie An,Hanjia Lyu, Christopher Kanan, Jiebo Luo

arxiv(2022)

引用 1|浏览39
暂无评分
摘要
Visual-textual sentiment analysis aims to predict sentiment with the input of a pair of image and text, which poses a challenge in learning effective features for diverse input images. To address this, we propose a holistic method that achieves robust visual-textual sentiment analysis by exploiting a rich set of powerful pre-trained visual and textual prior models. The proposed method consists of four parts: (1) a visual-textual branch to learn features directly from data for sentiment analysis, (2) a visual expert branch with a set of pre-trained "expert" encoders to extract selected semantic visual features, (3) a CLIP branch to implicitly model visual-textual correspondence, and (4) a multimodal feature fusion network based on BERT to fuse multimodal features and make sentiment predictions. Extensive experiments on three datasets show that our method produces better visual-textual sentiment analysis performance than existing methods.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要