Baryogenesis from decaying magnetic helicity in axiogenesis

arxiv(2023)

引用 0|浏览4
暂无评分
摘要
bstract Generating axion dark matter through the kinetic misalignment mechanism implies the generation of large asymmetries for Standard Model fermions in the early universe. Even if these asymmetries are washed out at later times, they can trigger a chiral plasma instability in the early universe. Similarly, a direct coupling of the axion with the hypercharge gauge field can trigger a tachyonic instability. These instabilities produce helical magnetic fields, which are preserved until the electroweak phase transition. At the electroweak phase transition, these become a source of baryon asymmetry, which can be much more efficient than the original axiogenesis proposal. We discuss constraints on axion dark matter production from the overproduction of the baryon asymmetry as well as a minimal, albeit fine-tuned setup, where both the correct dark matter abundance and baryon asymmetry can be achieved. For a given axion decay constant, this leads to a sharp prediction for the mass of the radial direction of the Peccei Quinn field, which is a soft mass scale in supersymmetric theories.
更多
查看译文
关键词
Axions and ALPs,Baryo-and Leptogenesis,Cosmology of Theories BSM,Early Universe Particle Physics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要