Decoding protein binding landscape on circular RNAs with base-resolution transformer models

Computers in Biology and Medicine(2024)

引用 0|浏览15
暂无评分
摘要
Circular RNAs (circRNAs), a class of endogenous RNA with a covalent loop structure, can regulate gene expression by serving as sponges for microRNAs and RNA-binding proteins (RBPs). To date, most computational methods for predicting RBP binding sites on circRNAs focus on circRNA fragments instead of circRNAs. These methods detect whether a circRNA fragment contains binding sites, but cannot determine where are the binding sites and how many binding sites are on the circRNA transcript. We report a hybrid deep learning-based tool, CircSite, to predict RBP binding sites at single-nucleotide resolution and detect key contributed nucleotides on circRNA transcripts. CircSite takes advantage of convolutional neural networks (CNNs) and Transformer for learning local and global representations of circRNAs binding to RBPs, respectively. We construct 37 datasets of circRNAs interacting with proteins for benchmarking and the experimental results show that CircSite offers accurate predictions of RBP binding nucleotides and detects key subsequences aligning well with known binding motifs. CircSite is an easy-to-use online webserver for predicting RBP binding sites on circRNA transcripts and freely available at http://www.csbio.sjtu.edu.cn/bioinf/CircSite/.
更多
查看译文
关键词
Circular RNAs,RNA binding proteins,Convolutional neural networks,Transformer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要