Lipid-A-dependent and cholesterol-dependent dynamics properties of liposomes from gram-negative bacteria in ESKAPE

Scientific reports(2022)

引用 3|浏览3
暂无评分
摘要
AntiMicrobial Resistance (AMR) is a worldwide health emergency. ESKAPE pathogens include the most relevant AMR bacterial families. In particular, Gram-negative bacteria stand out due to their cell envelope complexity which exhibits strong resistance to antimicrobials. A key element for AMR is the chemical structure of lipid A, modulating the physico-chemical properties of the membrane and permeability to antibiotics. Liposomes are used as models of bacterial membrane infective vesicles. In this work, coarse-grained molecular dynamics simulations were used to model liposomes from ESKAPE Gram-negative bacteria ( Escherichia coli, Klebsiella pneumoniae , Acinetobacter baumannii , and Pseudomonas aeruginosa ). We captured the role of lipid A, cardiolipin and cholesterol on liposome morphology and physico-chemical properties. Additionally, the reported antimicrobial peptides Cecropin B1, JB95, and PTCDA1-kf, were used to unveil their implications on membrane disruption. This study opens a promising starting point to understand molecular keys of bacterial membranes and to promote the discovery of new antimicrobials to overcome AMR.
更多
查看译文
关键词
Computational chemistry,Lipids,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要