Galvani Potential-Dependent Single Collision/Fusion Impacts at Liquid/Liquid Interface: Faradic or Capacitive?

The journal of physical chemistry. B(2022)

引用 0|浏览3
暂无评分
摘要
A new subtype of nano-impacts by emulsion droplets via reorganization of the electric double layer (EDL) at the liquid/liquid interface (LLI) is reported. This subtype shows anodic, bipolar, and cathodic transient currents with a potential of zero charge (PZC) dependence, revealing the non-faradic characteristic of single fusion impacts. In addition, the absolute integrated mean charge is proportional to the Galvani potential at the ITIES, indicating that the EDL at the LLI may obey the discrete Helmholtz model. The exact PZC point is interpolated from the fitting curve, and the droplet size distribution is estimated from the integrated charge distribution. Moreover, the different values of between single fusion impacts of MgCl droplets and pure water droplets is due to the specific absorption between Mg and antagonistic anion in the organic phase. The influence of the concentration of the supporting electrolyte is also investigated. The above work gives physicochemical insights into the EDL at the micropipette-supported LLI and provides potential application to measure micro/nanoscale heterogeneous media without catalytic, reactive, or charge-transfer activity via impact experiments at LLI.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要