Perovskite phase heterojunction solar cells

Nature Energy(2022)

引用 16|浏览6
暂无评分
摘要
Modern photovoltaic devices are often based on a heterojunction structure where two components with different optoelectronic properties are interfaced. The properties of each side of the junction can be tuned by either utilizing different materials (for example, donor/acceptor) or doping (for example, p–n junction) or even varying their dimensionality (for example, 3D/2D). Here we demonstrate the concept of phase heterojunction (PHJ) solar cells by utilizing two polymorphs of the same material. We demonstrate the approach by forming γ-CsPbI3/β-CsPbI3 perovskite PHJ solar cells. We find that all of the photovoltaic parameters of the PHJ device significantly surpass those of each of the single-phase devices, resulting in a maximum power conversion efficiency of 20.1%. These improvements originate from the efficient passivation of the β-CsPbI3 by the larger bandgap γ-CsPbI3, the increase in the built-in potential of the PHJ devices enabled by the energetic alignment between the two phases and the enhanced absorption of light by the PHJ structure. The approach demonstrated here offers new possibilities for the development of photovoltaic devices based on polymorphic materials. Fabricating perovskite heterojunctions is challenging. Now, Ji et al. form a phase heterojunction with two polymorphs of CsPbI3, leading to 20.1% efficiency in inorganic perovskite solar cells.
更多
查看译文
关键词
Semiconductors,Solar cells,Energy,general,Energy Policy,Economics and Management,Energy Systems,Energy Storage,Renewable and Green Energy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要