Demystify Transformers & Convolutions in Modern Image Deep Networks

arxiv(2022)

Cited 5|Views110
No score
Abstract
Recent success of vision transformers has inspired a series of vision backbones with novel feature transformation paradigms, which report steady performance gain. Although the novel feature transformation designs are often claimed as the source of gain, some backbones may benefit from advanced engineering techniques, which makes it hard to identify the real gain from the key feature transformation operators. In this paper, we aim to identify real gain of popular convolution and attention operators and make an in-depth study of them. We observe that the main difference among these feature transformation modules, e.g., attention or convolution, lies in the way of spatial feature aggregation, or the so-called "spatial token mixer" (STM). Hence, we first elaborate a unified architecture to eliminate the unfair impact of different engineering techniques, and then fit STMs into this architecture for comparison. Based on various experiments on upstream/downstream tasks and the analysis of inductive bias, we find that the engineering techniques boost the performance significantly, but the performance gap still exists among different STMs. The detailed analysis also reveals some interesting findings of different STMs, such as effective receptive fields and invariance tests. The code and trained models will be publicly available at https://github.com/OpenGVLab/STM-Evaluation
More
Translated text
Key words
modern image deep networks,convolutions,transformers
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined