A Logic Fluorescent Chemosensor Based on Eu3+ Functionalized Cd-MOFs for Sensing Fe3+ and Cu2+ Synchronously

European Journal of Inorganic Chemistry(2023)

引用 0|浏览0
暂无评分
摘要
One of the most critical and yet unsolved issues is the effective monitoring of multiple heavy metal ions in complex systems through their specific function in fluorescence detection. In this work, luminescence-active cadmium base metal-organic frameworks (Cd-MOFs) based on the planar and rigid pi-conjugated structure ligand benzo-(1,2;3,4;5,6)-tris (thiophene-2'-carboxylic acid) (H3BTTC) was chosen. A series of sensing experiments demonstrated that the Cd-MOFs exhibits selective and sensitive response for Fe3+ and Eu3+ through fluorescence "turn off" and "antenna effect" respectively. In addition, the encapsulation of Eu3+ inside the Cd-MOFs (Eu3+@Cd-MOFs) led to an excellent probe with dual emission. To this end, a programmable fluorescence platform was developed to detect Fe3+ and Cu2+, in which the emission peaks of both the ligand and Eu3+ are completely quenched by Fe3+. The ratiometric detection of Cu2+ leads to a decrease in Eu3+ emission, while the ligand emission remains stable. To demonstrate the strategy, the fluorescence (Output) of Cd-MOFs, Eu3+@Cd-MOFs, and the analytes (Eu3+, Fe3+, and Cu2+, input) achieved elementary Boolean logic operations (OR, NOR, AND) and they constitute a logic fluorescent chemosensor to analyze Fe3+ and Cu2+ synchronously.
更多
查看译文
关键词
Copper,Fluorescence,Iron,Metal-organic frameworks,Sensors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要