Objective: Brain-computer interfaces (BCIs) have been used in two-d"/>

Brain-Controlled 2D Navigation Robot Based on a Spatial Gradient Controller and Predictive Environmental Coordinator

IEEE Journal of Biomedical and Health Informatics(2022)

引用 4|浏览30
暂无评分
摘要
Objective: Brain-computer interfaces (BCIs) have been used in two-dimensional (2D) navigation robotic devices, such as brain-controlled wheelchairs and brain-controlled vehicles. However, contemporary BCI systems are driven by binary selective control. On the one hand, only directional information can be transferred from humans to machines, such as “turn left” or “turn right”, which means that the quantified value, such as the radius of gyration, cannot be controlled. In this study, we proposed a spatial gradient BCI controller and corresponding environment coordinator, by which the quantified value of brain commands can be transferred in the form of a 2D vector, improving the flexibility, stability and efficiency of BCIs. Methods: A horizontal array of steady-state visual stimulation was arranged to excite subject (EEG) signals. Covariance arrays between subjects’ electroencephalogram (EEG) and stimulation features were mapped into quantified 2-dimensional vectors. The generated vectors were then inputted into the predictive controller and fused with virtual forces generated by the robot's predictive environment coordinator in the form of vector calculation. The resultant vector was then interpreted into the driving force for the robot, and real-time speed feedback was generated. Results: The proposed SGC controller generated a faster (27.4 s vs. 34.9 s) response for the single-obstacle avoidance task than the selective control approach. In practical multiobstacle tasks, the proposed robot executed 39% faster in the target-reaching tasks than the selective controller and had better robustness in multiobstacle avoidance tasks (average failures significantly dropped from 27% to 4%). Significance: This research proposes a new form of brain-machine shared control strategy that quantifies brain commands in the form of a 2-D control vector stream rather than selective constant values. Combined with a predictive environment coordinator, the brain-controlled strategy of the robot is optimized and provided with higher flexibility. The proposed controller can be used in brain-controlled 2D navigation devices, such as brain-controlled wheelchairs and vehicles.
更多
查看译文
关键词
Brain-computer interfaces,robot control,human–machine shared control
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要