Grafting Vision Transformers.

CoRR(2022)

引用 0|浏览25
暂无评分
摘要
Vision Transformers (ViTs) have recently become the state-of-the-art across many computer vision tasks. In contrast to convolutional networks (CNNs), ViTs enable global information sharing even within shallow layers of a network, i.e., among high-resolution features. However, this perk was later overlooked with the success of pyramid architectures such as Swin Transformer, which show better performance-complexity trade-offs. In this paper, we present a simple and efficient add-on component (termed GrafT) that considers global dependencies and multi-scale information throughout the network, in both high- and low-resolution features alike. It has the flexibility of branching out at arbitrary depths and shares most of the parameters and computations of the backbone. GrafT shows consistent gains over various well-known models which includes both hybrid and pure Transformer types, both homogeneous and pyramid structures, and various self-attention methods. In particular, it largely benefits mobile-size models by providing high-level semantics. On the ImageNet-1k dataset, GrafT delivers +3.9%, +1.4%, and +1.9% top-1 accuracy improvement to DeiT-T, Swin-T, and MobileViT-XXS, respectively. Our code and models will be made available.
更多
查看译文
关键词
grafting,vision
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要