Constitutive parameter identification of transtibial residual limb soft tissue using ultrasound indentation and shear wave elastography

Journal of the Mechanical Behavior of Biomedical Materials(2023)

引用 2|浏览6
暂无评分
摘要
Finite element analysis (FEA) can be used to evaluate applied interface pressures and internal tissue strains for computational prosthetic socket design. This type of framework requires realistic patient-specific limb geometry and constitutive properties. In recent studies, indentations and inverse FEA with MRI-derived 3D patient geometries were used for constitutive parameter identification. However, long computational times and use of specialized equipment presents challenges for clinical, deployment. In this study, we present a novel approach for constitutive parameter identification using a combination of FEA, ultrasound indentation, and shear wave elastography. Local shear modulus measurement using elastography during an ultrasound indentation experiment has particular significance for biomechanical modeling of the residual limb since there are known regional dependencies of soft tissue properties such as varying levels of scarring and atrophy. Beyond prosthesis design, this work has broader implications to the fields of muscle health and monitoring of disease progression.
更多
查看译文
关键词
Prosthetic socket design,Soft tissue viscoelastic properties,Inverse finite element analysis,Ultrasound,Shear wave elastography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要