Model-Free Prediction of Adversarial Drop Points in 3D Point Clouds

arXiv (Cornell University)(2022)

Cited 0|Views7
No score
Adversarial attacks pose serious challenges for deep neural network (DNN)-based analysis of various input signals. In the case of 3D point clouds, methods have been developed to identify points that play a key role in the network decision, and these become crucial in generating existing adversarial attacks. For example, a saliency map approach is a popular method for identifying adversarial drop points, whose removal would significantly impact the network decision. Generally, methods for identifying adversarial points rely on the deep model itself in order to determine which points are critically important for the model's decision. This paper aims to provide a novel viewpoint on this problem, in which adversarial points can be predicted independently of the model. To this end, we define 14 point cloud features and use multiple linear regression to examine whether these features can be used for model-free adversarial point prediction, and which combination of features is best suited for this purpose. Experiments show that a suitable combination of features is able to predict adversarial points of three different networks -- PointNet, PointNet++, and DGCNN -- significantly better than a random guess. The results also provide further insight into DNNs for point cloud analysis, by showing which features play key roles in their decision-making process.
Translated text
Key words
adversarial drop points,3d points clouds,model-free
AI Read Science
Must-Reading Tree
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined