Feature Extraction with Handcrafted Methods and Convolutional Neural Networks for Facial Emotion Recognition

APPLIED SCIENCES-BASEL(2022)

引用 4|浏览2
暂无评分
摘要
This research compares the facial expression recognition accuracy achieved using image features extracted (a) manually through handcrafted methods and (b) automatically through convolutional neural networks (CNNs) from different depths, with and without retraining. The Karolinska Directed Emotional Faces, Japanese Female Facial Expression, and Radboud Faces Database databases have been used, which differ in image number and characteristics. Local binary patterns and histogram of oriented gradients have been selected as handcrafted methods and the features extracted are examined in terms of image and cell size. Five CNNs have been used, including three from the residual architecture of increasing depth, Inception_v3, and EfficientNet-B0. The CNN-based features are extracted from the pre-trained networks from the 25%, 50%, 75%, and 100% of their depths and, after their retraining on the new databases. Each method is also evaluated in terms of calculation time. CNN-based feature extraction has proved to be more efficient since the classification results are superior and the computational time is shorter. The best performance is achieved when the features are extracted from shallower layers of pre-trained CNNs (50% or 75% of their depth), achieving high accuracy results with shorter computational time. CNN retraining is, in principle, beneficial in terms of classification accuracy, mainly for the larger databases by an average of 8%, also increasing the computational time by an average of 70%. Its contribution in terms of classification accuracy is minimal when applied in smaller databases. Finally, the effect of two types of noise on the models is examined, with ResNet50 appearing to be the most robust to noise.
更多
查看译文
关键词
convolutional neural network, facial emotion recognition, feature extraction, histogram of oriented gradients, local binary patterns, transfer learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要