S2Net: Stochastic Sequential Pointcloud Forecasting.

European Conference on Computer Vision(2022)

引用 4|浏览52
Predicting futures of surrounding agents is critical for autonomous systems such as self-driving cars. Instead of requiring accurate detection and tracking prior to trajectory prediction, an object agnostic Sequential Pointcloud Forecasting (SPF) task was proposed [28], which enables a forecast-then-detect pipeline effective for downstream detection and trajectory prediction. One limitation of prior work is that it forecasts only a deterministic sequence of future point clouds, despite the inherent uncertainty of dynamic scenes. In this work, we tackle the stochastic SPF problem by proposing a generative model with two main components: (1) a conditional variational recurrent neural network that models a temporally-dependent latent space; (2) a pyramid-LSTM that increases the fidelity of predictions with temporally-aligned skip connections. Through experiments on real-world autonomous driving datasets, our stochastic SPF model produces higher-fidelity predictions, reducing Chamfer distances by up to 56.6% compared to its deterministic counterpart. In addition, our model can estimate the uncertainty of predicted points, which can be helpful to downstream tasks.
Sequential point cloud forecasting,Variational recurrent neural network,Future uncertainty,Self-driving cars
AI 理解论文