BungeeNeRF: Progressive Neural Radiance Field for Extreme Multi-scale Scene Rendering
Computer Vision – ECCV 2022(2022)
摘要
Neural radiance fields (NeRF) has achieved outstanding performance in modeling 3D objects and controlled scenes, usually under a single scale. In this work, we focus on multi-scale cases where large changes in imagery are observed at drastically different scales. This scenario vastly exists in real-world 3D environments, such as city scenes, with views ranging from satellite level that captures the overview of a city, to ground level imagery showing complex details of an architecture; and can also be commonly identified in landscape and delicate minecraft 3D models. The wide span of viewing positions within these scenes yields multi-scale renderings with very different levels of detail, which poses great challenges to neural radiance field and biases it towards compromised results. To address these issues, we introduce BungeeNeRF, a progressive neural radiance field that achieves level-of-detail rendering across drastically varied scales. Starting from fitting distant views with a shallow base block, as training progresses, new blocks are appended to accommodate the emerging details in the increasingly closer views. The strategy progressively activates high-frequency channels in NeRF’s positional encoding inputs and successively unfolds more complex details as the training proceeds. We demonstrate the superiority of BungeeNeRF in modeling diverse multi-scale scenes with drastically varying views on multiple data sources (city models, synthetic, and drone captured data) and its support for high-quality rendering in different levels of detail.
更多查看译文
AI 理解论文
溯源树
样例

生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn