Faster Rates, Adaptive Algorithms, and Finite-Time Bounds for Linear Composition Optimization and Gradient TD Learning

INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151(2022)

引用 0|浏览22
暂无评分
摘要
Gradient temporal difference (GTD) algorithms are provably convergent policy evaluation methods for off-policy reinforcement learning. Despite much progress, proper tuning of the stochastic approximation methods used to solve the resulting saddle point optimization problem requires the knowledge of several (unknown) problem-dependent parameters. In this paper we apply adaptive step-size tuning strategies to greatly reduce this dependence on prior knowledge, and provide algorithms with adaptive convergence guarantees. In addition, we use the underlying refined analysis technique to obtain new O(1/T) rates that do not depend on the strong-convexity parameter of the problem, and also apply to the Markov noise setting, as well as the unbounded i.i.d. noise setting.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要