DARPT: defense against remote physical attack based on TDC in multi-tenant scenario

Design Automation Conference (DAC)(2022)

引用 1|浏览17
暂无评分
摘要
With rapidly increasing demands for cloud computing, Field Programmable Gate Array (FPGA) has become popular in cloud datacenters. Although it improves computing performance through flexible hardware acceleration, new security concerns also come along. For example, unavoidable physical leakage from the Power Distribution Network (PDN) can be utilized by attackers to mount remote Side-Channel Attacks (SCA), such as Correlation Power Attacks (CPA). Remote Fault Attacks (FA) can also be successfully presented by malicious tenants in a cloud multi-tenant scenario, posing a significant threat to legal tenants. There are few hardware-based countermeasures to defeat both remote attacks that aforementioned. In this work, we exploit Time-to-Digital Converter (TDC) and propose a novel defense technique called DARPT (Defense Against Remote Physical attack based on TDC) to protect sensitive information from CPA and FA. Specifically, DARPT produces random clock jitters to reduce possible information leakage through the power side-channel and provides an early warning of FA by constantly monitoring the variation of the voltage drop across PDN. In comparison to the fact that 8k traces are enough for a successful CPA on FPGA without DARPT, our experimental results show that up to 800k traces (100 times) are not enough for the same FPGA protected by DARPT. Meanwhile, the TDC-based voltage monitor presents significant readout changes (by 51.82% or larger) under FA with ring oscillators, demonstrating sufficient sensitivities to voltage-drop-based FA.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要