Language Generation Models Can Cause Harm: So What Can We Do About It? An Actionable Survey

arxiv(2023)

引用 21|浏览72
暂无评分
摘要
Recent advances in the capacity of large language models to generate human-like text have resulted in their increased adoption in user-facing settings. In parallel, these improvements have prompted a heated discourse around the risks of societal harms they introduce, whether inadvertent or malicious. Several studies have explored these harms and called for their mitigation via development of safer, fairer models. Going beyond enumerating the risks of harms, this work provides a survey of practical methods for addressing potential threats and societal harms from language generation models. We draw on several prior works' taxonomies of language model risks to present a structured overview of strategies for detecting and ameliorating different kinds of risks/harms of language generators. Bridging diverse strands of research, this survey aims to serve as a practical guide for both LM researchers and practitioners, with explanations of different mitigation strategies' motivations, their limitations, and open problems for future research.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络