Stabilization of Ni 0 /Ni II Heterojunctions inside Robust Porous Metal Silicate Materials for High-Performance Catalysis.

Inorganic chemistry(2022)

引用 5|浏览3
暂无评分
摘要
Heterostructural nanomaterials demonstrate great potential to replace noble metal-based catalysts because heterojunctions could induce relocalization of electrons and facilitate the migration of electrons and charge carriers at the heterostructural boundary between electron-rich and electron-deficient metal sites; however, the instability of heterojunctions greatly hinders their practical applications. We report herein an effective strategy for the fabrication and stabilization of Ni/Ni heterojunctions inside a porous metal silicate (PMS) material PMS-22 using a nickel coordination complex as the bifunctional template. The synergistic activity between metallic nickel and nickel silicate in PMS-22 highly boosts the catalytic activity in the hydrogenation of phenol, which could activate phenol at a very low temperature of 50 °C. Most importantly, PMS-22 demonstrates robust stability in catalysis, attributed to the strong interaction and charge transfer between metallic Ni and nickel silicate at the heterointerfaces inside the confined pores. Therefore, this work paves a new pathway to improve the stability and activity of heterostructural nanomaterials for catalytic applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要