Dissecting infant leukemia developmental origins with a hemogenic gastruloid model

biorxiv(2022)

引用 1|浏览8
暂无评分
摘要
Current in vitro models of developmental blood formation lack spatiotemporal coherence and weakly replicate the hematopoietic microenvironment. Developmentally-appropriate models can enhance understanding of infant acute myeloid leukemia (infAML), which putatively originates in utero and has 50% age-unique genetic events, suggesting unique biology. The commonest genetic abnormality unique to infants involves homeobox gene MNX1 , whose leukemogenic mechanisms remain unknown. Recently, 3D self-organising embryonic stem cell (SC)-based gastruloids have shown promise in recapitulating embryonic events with time/space precision. Herein, we report a hemogenic gastruloid (haemGx) system that captures multi-wave blood formation, progenitor specification from hemogenic endothelium (HE), and approximates generation of hematopoietic SC precursors. Enforced MNX1 expression in haemGx promotes HE formation, perturbs endothelial-to-hemogenic transition, and critically achieves transformation, generating myeloid colonies which display MNX1 AML signatures. By combining functional assays with single-cell transcriptomics, we establish the haemGx as a new model of normal and leukemic embryonic hematopoiesis amenable to mechanistic exploration. ### Competing Interest Statement AMA and CP are co-inventors in the patent application PCT/GB2019/052668: Polarised Three-Dimensional Cellular Aggregates. The other authors have no interests to declare.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要