GRAPHITE: Generating Automatic Physical Examples for Machine-Learning Attacks on Computer Vision Systems

2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P)(2022)

引用 2|浏览52
暂无评分
摘要
This paper investigates an adversary's ease of attack in generating adversarial examples for real-world scenarios. We address three key requirements for practical attacks for the real-world: 1) automatically constraining the size and shape of the attack so it can be applied with stickers, 2) transform-robustness, i.e., robustness of a attack to environmental physical variations such as viewpoint and lighting changes, and 3) supporting attacks in not only white-box, but also black-box hard-label scenarios, so that the adversary can attack proprietary models. In this work, we propose GRAPHITE, an efficient and general framework for generating attacks that satisfy the above three key requirements. GRAPHITE takes advantage of transform-robustness, a metric based on expectation over transforms (EoT), to automatically generate small masks and optimize with gradient-free optimization. GRAPHITE is also flexible as it can easily trade-off transform-robustness, perturbation size, and query count in black-box settings. On a GTSRB model in a hard-label black-box setting, we are able to find attacks on all possible 1,806 victim-target class pairs with averages of 77.8% transform-robustness, perturbation size of 16.63% of the victim images, and 126K queries per pair. For digital-only attacks where achieving transform-robustness is not a requirement, GRAPHITE is able to find successful small-patch attacks with an average of only 566 queries for 92.2% of victim-target pairs. GRAPHITE is also able to find successful attacks using perturbations that modify small areas of the input image against PatchGuard, a recently proposed defense against patch-based attacks.
更多
查看译文
关键词
adversarial examples,patch attacks,physical attacks,black-box attacks,graphite
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要