Structural variation and parallel evolution of apomixis in citrus during domestication and diversification

National Science Review(2022)

引用 14|浏览13
暂无评分
摘要
Abstract Apomixis, or asexual seed formation is prevalent in the Citrinae via a mechanism termed nucellar or adventitious embryony. Here, multiple embryos of a maternal genotype form directly from nucellar cells in the ovule and can outcompete the developing zygotic embryo as they utilize the sexually derived endosperm for growth. Whilst nucellar embryony enables the propagation of clonal plants of maternal genetic constitution, it is also a barrier to effective breeding through hybridization. To address the genetics and evolution of apomixis in the Citrinae, a chromosome-level genome of Hongkong kumquat (Fortunella hindsii) was assembled following a genome-wide variation map including structural variants (SVs) based on 234 Citrinae accessions. This map revealed that hybrid citrus cultivars shelter genome-wide deleterious mutations and SVs into heterozygous states free from recessive selection, which may explain the capability of nucellar embryony in most cultivars during Citrinae diversification. Analyses revealed that parallel evolution may explain the repeated origin of apomixis in different genera of Citrinae. Within Fortunella, we found that apomixis of some varieties originated via introgression. In apomictic Fortunella, the locus associated with apomixis contains the FhRWP gene, encoding an RWP-RK domain-containing protein previously shown to be required for nucellar embryogenesis in Citrus. We found the heterozygous SV in the FhRWP and CitRWP promoters from apomictic Citrus or Fortunella due to either two or three Miniature inverted transposon element (MITE) insertions. A transcription factor FhARID, encoding an AT-rich interaction domain-containing protein binds to the MITEs in the promoter of apomictic varieties which facilitates induction of nucellar embryogenesis. This study provides evolutionary genomic and molecular insights into apomixis in Citrinae and has potential ramifications for citrus breeding.
更多
查看译文
关键词
genomics,evolution,population genetics,apomixis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要