Temperature‐induced compensatory growth in the nematode C. elegans is regulated by a thermosensitive TRP channel and influences reproductive rate

Functional Ecology(2022)

引用 1|浏览3
暂无评分
摘要
Animals are often not growing at the maximum rate, but can compensate for a bad start of life by subsequently increasing growth rate. While this compensatory growth is widespread, its direct fitness consequences are seldom investigated and its genetic basis is unknown. We investigated the genetic regulation, as well as fitness and lifespan consequences of compensatory growth in response to temperature, using C. elegans knockout of the thermo-sensitive TRP ion channel TRPA-1, involved in temperature recognition. We exposed juvenile worms to cold, favourable (intermediate) or warm temperatures in order to delay or speed up development. Wild-type worms initially exposed to cold temperature experienced slower growth but after being switched to a more favourable temperature, they expressed compensatory growth and caught up in size. Those initially reared at warmer temperatures than favourable experienced slower growth and attained smaller adult size after being switched to the most favourable temperature. Compensatory growth also altered the reproductive schedule. While rate-sensitive individual fitness decreased by cold juvenile temperatures, as a direct effect of the substantial developmental delay, once worms returned to more favourable temperature, they shifted their reproductive schedule towards early reproduction. Therefore, when focusing on the post-treatment period, the reproductive rate increased even though lifetime reproductive success was unaffected. Surprisingly, compensatory growth did not reduce adult lifespan. In contrast to the findings for wild-type worms, juvenile temperature did not induce compensatory or slowed-down growth in the trpa-1 knockout mutants. We thus show that the trpa-1 is involved in the network regulating temperature-induced compensatory growth in C. elegans and that this compensatory growth can influence the reproductive rate.
更多
查看译文
关键词
thermosensitive trp channel,compensatory growth,reproductive rate,temperature-induced
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要