Influence of fluoride phytotoxicity in germinating seedlings of Pisum sativum : modeling of morpho-physiological traits

Vegetos(2022)

引用 2|浏览0
暂无评分
摘要
The crop production in India is severely affected by contaminated soil, including fluoride (F − ). Its higher concentration in soil, water, and the air is a serious problem for the near future globally. Thus, the present study aimed to assess the effects of fluoride-contaminated irrigation water (25, 50, 100, and 200 ppm) on plants. The growth and biomass traits (% germination, growth traits, shoot–root length, and fresh-dry mass) decreased with the increasing fluoride concentration in irrigation water. The loss was found in seed germination and radical length as the increasing concentration of fluoride (25–200 ppm). The percentage loss were found significant ( p < 0.05) in leaf number (25–70%), shoot length (20–70%), root length (25–70%), number of lateral roots (15–70%), shoot–root fresh (~ 16–70, 18–72%) and dry mass (~ 22–71, 13–74%). The loss was also found in SPAD value (12–32%), Fv/Fm (~ 3–17%), and photosynthetic pigments (chl. a 23–58%, chl. b 42–83% & chl. a + b 27–63%) correlated with the trends of growth and biomass with up-regulated electrolyte leakage in leaf (8–36%), root (19–85%), with ascorbate peroxidase in leaf (5–91%), root (8–60%) and glutathione peroxidase activities in leaf (8–76%) and root (21–105%). The model developed to explain morpho-physiological responses with respect to fluoride phytotoxicity exposure time fitted in experimental data having ‘r’ in the range of 0.939–1.000. Our studies findings advocate an adverse effect of fluoride contaminated irrigation water on seed germination, growth and development, photosynthetic, biochemical, ultrastructural, and biomass on pea plants.
更多
查看译文
关键词
Fluoride toxicity, Growth-development, Photosynthetic pigments, Fv/ Fm , Pisum sativum L., Ultrastructure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要