Organic tribovoltaic nanogenerator with electrically and mechanically tuned flexible semiconductor textile

Nano Energy(2023)

引用 6|浏览24
暂无评分
摘要
Obtaining a wear-resistant, high-output, flexible direct current (DC) friction energy harvester is quite important for implementing self-powered portable electronic devices and Internet of Things (IoT). In this work, a direct current flexible textile organic tribovoltaic nanogenerator (FT-OTG) is reported, which is consisted of blended film of 11.11% poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT: PSS) and 88.89% polyvinyl alcohol (PVA), a hydrophilic conductive ink, a hydrophobic conductive textile and Al slider. The working mechanism of OTG is that after absorbing friction energy, abound electron-hole pairs are excited at the metal-semiconductor interface. These carriers move directionally under the joint drive of electrostatic field and the built-in electric field to form a current. After PVA doping, the output performance of DC-OTG, including open-circuit voltage and short-circuit current, is improved 5.6 times and 4.2 times, respectively. Furthermore, the mechanical properties of blended film, such as wear resistance, elongation and tensile strength, are improved, among which elongation at break is increased by 8 times and tensile strength increased by 3.2 times. By simplify series connecting, 3 FT-OTGs can constantly power portable electronics, like electronic watch, thermometer and calculator, respectively. This work provides an effective way for simultaneously enhanced output performance and mechanical properties of FT-OTG, which is expected to be a robust way for harvesting friction energy for self-powered electronics device and IoT sensors.
更多
查看译文
关键词
Tribovoltaic effect,PVA doped,Wear resistance enhancement,Output enhancement,Flexible energy harvester
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要