Effects of Physical Exercise on Mitochondrial Biogenesis of Skeletal Muscle Modulated by Histones Modifications in Type 2 Diabetes

Open Access Macedonian Journal of Medical Sciences(2022)

引用 0|浏览0
暂无评分
摘要
Epigenetic modification in skeletal muscle induced by environmental factors seems to modulate several metabolic pathways that underlie Type 2 Diabetes Mellitus (T2DM) development. Mitochondrial biogenesis is an important process for maintaining lipid metabolism homeostasis, as well as epigenetic modifications in proteins that regulate this pathway have been observed in the skeletal muscle of T2DM subjects. Moreover, physical exercise affects several metabolic pathways attenuating metabolic deregulation observed in T2DM. The pathways that regulate mitochondrial homeostasis are one of the key components for understanding such physical exercise beneficial effects. Thus, in this study, we investigate the epigenetic mechanisms underlying mitochondrial biogenesis in the skeletal muscle in T2DM, focusing on histone modifications and the possible mechanisms by which physical exercise delay or inhibit T2DM onset. The results indicate that exercise promotes improvements in cellular metabolism through increasing enzymes of the antioxidant system, AMPK and ATP-citrate lyase activity, Acetyl-CoA concentration, and enhancing the acetylation of histones. A key mediator of mitochondrial biogenesis such as peroxisome proliferator-activated receptor γ coactivator-1α (PGC1) seems to be upregulated by exercise in T2DM and such factor positively regulates the skeletal muscle mitochondrial biogenesis, which improves energy metabolism and glucose homeostasis inhibiting or delaying insulin resistance and further T2DM.
更多
查看译文
关键词
mitochondrial biogenesis,skeletal muscle,physical exercise,diabetes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要