Highly evolved miaskitic syenites deciphering the origin and nature of enriched mantle source of ultrapotassic magmatism in the Variscan orogenic root (Bohemian Massif, Moldanubian Zone)

Lithos(2022)

引用 0|浏览2
暂无评分
摘要
A detailed study of alkali-rich syenites from the Gföhl unit of the Moldanubian Zone in the Bohemian Massif provides constraints on the exact origin and character of mantle source of ultrapotassic magmatism in the Variscan orogenic root in Central Europe. The syenites are characterized by highly alkaline composition (K2O 11.3–12.7 wt%; K2O/Na2O 6.8–7.5), crust-like isotopic signatures (87Sr/86Sr335 ∼ 0.7116; εNd335 ≤ −7.8), and significant trace element enrichment (Th, U, Zr, Hf, LILE, LREE). They host an extraordinary amount of zircon (0.5–5 vol%) along with subordinate titanite and apatite, reflecting their miaskitic affinity. Mineral chemistry suggests that syenites formed through fractional crystallization and accumulation from highly reduced, metaluminous to slightly peraluminous mantle-derived alkaline magmas. Whole-rock geochemistry and Sr-Nd isotopes provide direct evidence that they were produced by partial melting of metasomatic phlogopite-bearing vein network (glimmerites) in the lithospheric mantle, generated by the interaction of (U)HP fluids/melts derived from deeply subducted crustal material (Moldanubian granulites) with wall-rock peridotites. Low-degree partial melting of pure vein component produced unusual geochemical signatures of miaskitic syenites, compared to the composition of common ultrapotassic rocks in the Bohemian Massif, reflecting relatively higher degrees of partial melting of mixed glimmerite-peridotite mantle source.
更多
查看译文
关键词
(Ultra)potassic magmatism,Mantle metasomatism,Phlogopite-rich source,Low-degree melting,Bohemian Massif
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要