Exercise improves high-fat diet-induced metabolic disorder by promoting HDAC5 degradation through the ubiquitin-proteasome system in skeletal muscle.

Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme(2022)

引用 0|浏览3
暂无评分
摘要
Histone deacetylase 4/5 (HDAC4/5) are essential for regulating metabolic gene expression; AMPKα2 regulates HDAC4/5 activity and the expression of MuRF1 during exercise. In this study, we used and mice to explore the potential regulatory relationship between AMPKα2 and HDAC4/5 expression during exercise. Firstly, we fed C57BL/6J mice with high-fat diet for 8 weeks to assess the effects of high-fat diet on skeletal muscle metabolism and HDAC4/5 expression. We then performed a 6-week treadmill exercise on both and mice. After exercise, the expressions of HDAC4/5 were examined in both gastrocnemius and soleus. The citrate synthase activity and proteins involved in skeletal muscle oxidative process were assessed. To determine the relationship of HDAC4/5 and skeletal muscle oxidative capacity, citrate synthase activity was assessed after silencing HDAC4/5. Moreover, HDAC5 ubiquitination and the association of MuRF1 to HDAC5 were also investigated. Our results showed that 6-week exercise increased the skeletal muscle oxidative capacity and decreased HDAC4/5 expression only in soleus. HDAC5 silencing increased C2C12 cell oxidative capacity. Proteasome inhibition by MG132 abolished exercise-induced HDAC5 degradation mediated by MuRF1-ubiquitin-proteasome system. However, the ubiquitin-proteasome system (UPS) did not dominantly account for exercise-induced HDAC4 degradation. Exercise upregulated MuRF1-HDAC5 association in mice but not in mice. Our results revealed that 6-week exercise increased the skeletal muscle oxidative capacity and promoted HDAC5 degradation in soleus through the UPS, MuRF1-mediated HDAC5 ubiquitination. Although AMPKα2 played a partial role in regulating MuRF1 expression and HDAC5 ubiquitination, exercise-induced HDAC5 degradation did not fully depend on AMPKα2.
更多
查看译文
关键词
HDAC5,UPS,dégradation des protéines,exercice,exercise,muscle squelettique,protein degradation,skeletal muscle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要