Fabrication of lignin reinforced hybrid hydrogels with antimicrobial and self-adhesion for strain sensors

International Journal of Biological Macromolecules(2022)

引用 13|浏览8
暂无评分
摘要
Ionic conductive hydrogels prepared from various biological macromolecules are ideal materials for the manufacture of human motion sensors from the perspective of resource regeneration and environmental sustainability. However, it is still challenging to prepare hydrogels with both high toughness and self-healing ability. In this study, lignin-based β-CD-PVA (LCP) self-healing conductive hydrogels with high tensile properties were prepared by one-step method using alkali lignin as a plasticizer. Compared with PVA hydrogel, the maximum storage modulus and elongation were increased by 2.5 and 20.0 times, respectively. Uniform distribution of lignin can increase the fluidity and distance of polymer molecular chains, thus improving the viscoelastic and tensile properties of the LCP self-healing hydrogel. LCP hydrogels can maintain self-healing ability in both high (45 °C) and low temperature (0 °C) environments, and the self-healing ability is not affected by pH. Moreover, it also has good conductivity, anti-bacterial, thermostability, and anti-UV property, which has a good application prospect in the field of 3D printing and wearable electronic devices, which expands the efficient utilization of lignin in biorefinery.
更多
查看译文
关键词
Lignin,Self-healing,Hydrogel,Electrical conductivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要