Dynamic DNA methylation contributes to carryover effects and beneficial acclimatization in geoduck clams

biorxiv(2022)

引用 2|浏览2
暂无评分
摘要
Given the rapidly changing global climate, there is a growing need to understand the acclimatory basis of animal response to environmental change. To investigate the role of DNA methylation in environmental acclimatization, we generated a reference genome and surveyed the physiology and DNA methylomes of juvenile geoduck clams, Panopea generosa, under differing seawater pH regimes. Juveniles were initially exposed to one of three seawater pH conditions, followed by ambient common-garden conditions, then a second reciprocal exposure to ambient pH or pH 7.4. Within 10 days of the initial low pH exposure, juvenile clams showed decreased shell size relative to ambient pH with corresponding differential DNA methylation. Following four months of ambient common-garden conditions, juveniles initially exposed to low pH compensatorily grew larger, with DNA methylation indicative of these phenotypic differences, demonstrating epigenetic carryover effects persisted months after initial exposure. Functional enrichment analysis of differentially methylated genes revealed regulation of signal transduction through widespread changes in the Wnt signaling pathways that influence cell growth, proliferation, tissue and skeletal formation, and cytoskeletal change. After 10 days of secondary exposure to pH 7.4, naive juvenile clams were more sensitive to low pH compared to those initially exposed, showing reduced growth and having nearly a 2-fold greater change in DNA methylation. Collectively, this new genomic resource and coordinated phenotypic and methylomic response support that epigenetic mechanisms underlie acclimatization to provide beneficial phenotypes. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
geoduck clams,dynamic dna methylation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要