Ultrahigh-efficient BiOBr-x%La@y%CNQDs nanocomposites with enhanced generation and separation of photogenerated carriers towards bisphenol A degradation and toxicity reduction.

Chemosphere(2022)

引用 2|浏览0
暂无评分
摘要
In this study, a series of hierarchical flower-like La-doped BiOBr composites modified with carbon nitride quantum dots (BiOBr-x%La@y%CNQDs) was synthesized using a microwave solvothermal method in combination with a calcination method. It was found that La doping and CNQDs co-decorated with BiOBr showed much better photoreactivity for bisphenol A (BPA) degradation than pure BiOBr. The best degradation and mineralization efficiencies of BPA were 100% and 77% within 12 min at La and CNQDs contents of 1% and 1.25%, respectively. Various characterization results demonstrated that this synergistic effect on BiOBr-1%La@1.25%CNQDs was attributed to its improved light-harvesting properties, enhanced photogenerated electron and holes pairs separation and interfacial charge transfer. Degradation pathways were proposed based on active species analysis, identification of nine intermediates, and density functional theory (DFT) calculations. Furthermore, a bioluminescence assay of the inhibition rate of the luminescent bacterium Vibrio qinghaiensis sp. Q67 showed that BiOBr-1%La@1.25%CNQDs have superior detoxification ability. The present study provides some insight into the design of ultrahigh-efficiency nanojunction photocatalysts with a broadened photoabsorption range and improved separation efficiency of photogenerated carriers to enhance the degradation and detoxification performance of BPA.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要