An Equivalent Model of Wind Farm Based on Multivariate Multi-Scale Entropy and Multi-View Clustering

ENERGIES(2022)

引用 1|浏览1
暂无评分
摘要
Wind farm (WF) equivalence is an effective method to achieve accurate and efficient simulation of large-scale WF. Existing equivalent models are generally suitable for one certain or very few scenarios, and have difficulty reflecting the multiple aspects of dynamic processes of WF. Aiming at these problems, this paper proposes an equivalent model of WF based on multivariate multi-scale entropy (MMSE) and multi-view clustering. Firstly, the influence of the factors on the dynamic process of the wind turbine (WT) is discussed, including control mode, wind speed and its wake effect, resistance of crowbar resistor and so on. The relationship between these factors and the dynamic equivalence of WF is analyzed. Secondly, an overview of MMSE is given, and the applicability of MMSE on WF equivalence is analyzed. On this basis, this paper proposes the extraction process of a WT clustering indicator using MMSE. Then, the multi-view fuzzy C means (MV-FCM) algorithm is used for the clustering of WTs, and the equivalent model of WF is obtained after calculating the equivalent parameters. Finally, the IEEE14 power system including WF is simulated. The results show that the equivalent model could be applied to dynamic process simulation in various fault scenarios of power systems, and the error is small when the cluster number is 4. Compared with the detailed model, the simulation time of the WF equivalent model proposed in this paper is shortened by 86%, and the simulation accuracy is improved by about 44% compared with the comparative model.
更多
查看译文
关键词
wind farm, multivariate multi-scale entropy, WF equivalence, data mining, cluster, multi-scenario
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要