Long-Term Effects of Biochar Application With Reduced Chemical Fertilizer on Paddy Soil Properties and japonica Rice Production System

FRONTIERS IN ENVIRONMENTAL SCIENCE(2022)

引用 4|浏览6
暂无评分
摘要
To clarify the effects of co-application of rice-straw biochar and different chemical fertilizer doses on paddy soil properties and japonica rice production in Northeast China, a located-field experiment was adopted for 5 years. The treatments included fertilization (F, no biochar, control) and rice-straw biochar (7.5 t ha(-1)) combined with different chemical fertilizer doses (100, 80, and 60% that of F) set as CF, CF1, and CF2, respectively. The results showed that the co-application of biochar and chemical fertilizers after 5 years reduced soil bulk density, increased soil total and capillary porosity, changed the soil solid-liquid-gas ratio (increased the liquid and air ratios and decreased the solid ratio), and increased soil macroaggregates (>0.25 mm) and aggregate stability, which enhanced the soil's physical properties. Furthermore, the co-application improved soil pH and soil enzyme activity (urease, sucrase, and catalase) and had a significant effect on promoting SOM. The soil total N, P, and K of CF and CF1, were 23.48, %, 47.28%, and 26.59% and 9.47%, 43.98%, and 27.87% higher than those of the control, respectively. The soil available nutrients (N, P, and K) increased in the co-application treatment, shown as the nitrogen was promoted higher in the early growth of rice, while phosphorus and potassium were exhibited greater in the late growth. With the soil amendment, the co-application increased the rice plant height and dry matter accumulation, and the CF and CF1 increased yields by 5.78 and 2.41%, respectively, by increasing the rice effective panicles, grains per panicle, and seed-setting rate. The co-application of biochar and chemical fertilizers could significantly amend soil properties and reduce chemical fertilizer use to ensure rice-grain output, which has an important significance for enhancing sustainable soil and crop productivity.
更多
查看译文
关键词
biochar, paddy soil, chemical fertilizer, rice, productivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要