Secondary bile acids mediate high fat diet-induced upregulation of R-spondin 3 and intestinal epithelial proliferation.

JCI insight(2022)

引用 6|浏览5
暂无评分
摘要
High-fat diet (HFD) contributes to the increased incidence of colorectal cancer; but the mechanisms are unclear. We found that R-spondin 3 (Rspo3), a ligand for LGR4 and LGR5, was the major subtype and produced by myofibroblasts beneath the crypts in the intestine; HFD upregulated colonic Rspo3, LGR4, LGR5 and β-catenin gene expressions in specific pathogen free rodents, but not in germfree mice, and the upregulations were prevented by bile acids (BA) binder, cholestyramine (CHO) or antibiotic treatment, indicating mediating by both BA and gut microbiota. CHO or antibiotic treatments prevented HFD-induced enrichment of Lachnospiraceae and Rumincoccaceae, which are capable of transforming 10 into 20 BA. Oral administration of deoxycholic acid (DCA), or inoculation of a combination of BA deconjugator Lactobacillus plantarum and 7-α-dehydroxylase-containing Clostridium scindens with HFD to germfree mice increased colonic Rspo3 mRNA, indicating that formation of 20 BA by gut microbiota is responsible for HFD-induced upregulation of Rspo3. In primary myofibroblasts DCA increased Rpso3 mRNA via TGR5. Finally, we showed that CHO or conditional deletion of Rspo3 prevented HFD- or DCA- induced intestinal proliferation. We conclude that secondary BA is responsible for HFD-induced upregulation of Rspo3, which in turn mediates HFD-induced intestinal epithelial proliferation.
更多
查看译文
关键词
Colorectal cancer,Gastroenterology,Mouse stem cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要