The function of FUS in neurodevelopment revealed by the brain and spinal cord organoids.

Molecular and cellular neurosciences(2022)

引用 1|浏览3
暂无评分
摘要
The precise control of proliferation and differentiation of neural progenitors is crucial for the development of the central nervous system. Fused in sarcoma (FUS) is an RNA-binding protein pathogenetically linked to Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD) disease, yet the function of FUS on neurodevelopment is remained to be defined. Here we report a pivotal role of FUS in regulating the human cortical brain and spinal cord development via the human iPSCs-derived organoids. We found that depletion of FUS via CRISPR/CAS9 leads to an enhancement of neural proliferation and differentiation in cortical brain-organoids, but intriguingly an impairment of these phenotypes in spinal cord-organoids. In addition, FUS binds to the mRNA of a Trk tyrosine kinase receptor of neurotrophin-3 (Ntrk3) and regulates the expression of the different isoforms of Ntrk3 in a tissue-specific manner. Finally, alleviated Ntrk3 level via shRNA rescued the effects of FUS-knockout on the development of the brain- and spinal cord-organoids, suggesting that Ntrk3 is involved in FUS-regulated organoids developmental changes. Our findings uncovered the role of FUS in the neurodevelopment of the human CNS.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要