Impact of size effects on photopolymerization and its optical monitoring in-situ

Additive Manufacturing(2022)

引用 4|浏览10
暂无评分
摘要
Photopolymerization processes are exploited in light exposure-based 3D printing technologies, where either a focused laser beam or a patterned light sheet allows layers of a UV curable, liquid pre-polymer to be solidified. Here we focus on the crucial, though often neglected, role of the layer thickness on photopolymerization. The temporal evolution of polymerization reactions occurring in droplets of acrylate-based oligomers and in photoresist films with varied thickness is investigated by means of an optical system, which is specifically designed for in-situ and real-time monitoring. The time needed for complete curing is found to increase as the polymerization volume is decreased below a characteristic threshold that depends on the specific reaction pathway. This behavior is rationalized by modeling the process through a size-dependent polymerization rate. Our study highlights that the formation of photopolymerized networks might be affected by the involved volumes regardless of the specific curing mechanisms, which could play a crucial role in optimizing photocuring-based additive manufacturing.
更多
查看译文
关键词
Photopolymerization,Process monitoring,Optically transparent materials,Light scattering,Vat photopolymerization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要