Surface enhanced fluorescence immuno-biosensor based on gold nanorods

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy(2023)

引用 6|浏览2
暂无评分
摘要
Gold nanoparticles (AuNPs) are attractive structures for biosensing, most due to different properties at nanoscale and biocompatibility. Localized surface plasmon resonance (LSPR) is one of these properties; LSPR enable the electromagnetic field enhancement closer to metallic surface, which allows surface-enhanced spectroscopies, like surface enhanced fluorescence (SEF). In this study, an immuno-biosensor based on gold nanorods (AuNRs) and SEF was constructed for simple and fast analysis to detect albumin antibody (anti-BSA) using antigen-antibody (anti-BSA/BSA) interaction as the biorecognition model. AuNRs were presented in two distinct configurations, in suspension (S-AuNRs) and adsorbed on glass slides (AuNRs-chip), and the detection was performed through an extrinsic method, wherein the SEF signal of a reporter molecule (IR-820 cyanine-type dye) was monitored. The analyte detection was evidenced by SEF mapping, where the average signal in the presence of anti-BSA was three times more intense than for the assay in the absence of analyte. A digital protocol was proposed to simplify the spectroscopic data analysis and reduce the intensity variability; in this protocol the number of positive events in the presence of anti-BSA is much larger (around two times) compared to the absence of analyte. The AuNRs based SEF immuno-biosensor allowed an efficient and simple analysis with specific biorecognition and may contribute as an efficient spectroscopy platform for immuno-biosensing.
更多
查看译文
关键词
Nanoparticles,Plasmonics,SEF,Biosensors,Enhanced spectroscopies,Molecular recognition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要