A Network Approach to Genetic Circuit Designs

ACS SYNTHETIC BIOLOGY(2022)

引用 5|浏览15
暂无评分
摘要
As genetic circuits become more sophisticated, the size and complexity of data about their designs increase. The data captured goes beyond genetic sequences alone; information about circuit modula r i t y and functional details improves comprehension, performance analysis, and design automation techniques. However, new data types expose new challenges around the accessibi l i t y , visualization, and usability of design data (and metadata). Here, we present a method to transform ci r c u i t designs into networks and showcase its potential to enhance the uti l i t y of design data. Since networks are dynamic structures, initial graphs can be interactively shaped into subnetworks of relevant information based on requirements such as the hierarchy of biological parts or interactions between entities. A significant advantage of a network approach is the abi l i t y to scale abstraction, providing an automatic sliding level of detail that further tailors the visualization to a given situation. Additionally, several visual changes can be applied, such as coloring or clustering nodes based on types (e.g., genes or promoters), resulting in easier comprehension from a user perspective. This approach allows circuit designs to be coupled to other networks, such as metabolic pathways or implementation protocols captured in graph-like formats. We advocate using networks to structure, access, and improve synthetic biology information.
更多
查看译文
关键词
genetic,network approach
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要