Ensemble Force Spectroscopy by Shear Forces.

Journal of visualized experiments : JoVE(2022)

引用 0|浏览4
暂无评分
摘要
Single-molecule techniques based on fluorescence and mechanochemical principles provide superior sensitivity in biological sensing. However, due to the lack of high throughput capabilities, the application of these techniques is limited in biophysics. Ensemble force spectroscopy (EFS) has demonstrated high throughput in the investigation of a massive set of molecular structures by converting mechanochemical studies of individual molecules into those of molecular ensembles. In this protocol, the DNA secondary structures (i-motifs) were unfolded in the shear flow between the rotor and stator of a homogenizer tip at shear rates up to 77796/s. The effects of flow rates and molecular sizes on the shear forces experienced by the i-motif were demonstrated. The EFS technique also revealed the binding affinity between DNA i-motifs and ligands. Furthermore, we have demonstrated a click chemistry reaction that can be actuated by shear force (i.e., mechano-click chemistry). These results establish the effectiveness of using shear force to control the conformation of molecular structures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要