Effects of tobacco nitrate content on free radical levels in mainstream smoke

Free Radical Biology and Medicine(2022)

引用 2|浏览8
暂无评分
摘要
Tobacco smoke free radicals play an important role in the development of smoking related adverse health effects. We previously reported that gas phase (GP) radicals vary greatly by cigarette brand and tobacco variety and are highly correlated with levels of NNK in smoke. Since NNK production in tobacco is dependent on nitrate, we proposed that GP radical production may also be associated with tobacco nitrate content. To test this, we examined the relationship between intrinsic nitrate levels in 15 individual tobacco types and the levels of free radicals delivered in mainstream smoke from cigarettes produced from these tobaccos. Intrinsic nitrate levels varied >250-fold among the tobacco types, ranging from <0.1 mg/g tobacco in the Bright Leaf types to 24.1 ± 0.4 mg/g in Light Fire Cured Virginia tobacco. Among the tobacco types tested, GP radicals were highly correlated with nitrate levels (r = 0.96, p < 0.0001). To investigate nitrate-specific changes to free radical production during smoking, different concentrations of exogenous sodium nitrate were added to unsmoked shredded leaves of 4 different tobacco types (Bright Leaf Sweet Virginia, American Virginia, Semi-Oriental 456, and reconstituted). Nitrate addition resulted in dose-dependent increases in GP radicals in the corresponding smoke, supporting our hypothesis that intrinsic nitrate levels are responsible for GP radical production in cigarette smoke. We also observed increases in NNK levels as a function of added nitrate that varied significantly among the 4 tobacco types tested, implying that other tobacco-type related factors may be impacting nicotine nitrosation during pyrolysis. Altogether, these findings have identified tobacco nitrate as a key factor in the production of GP radicals, but to a lesser extent with PP radicals, as well as NNK during combustion and highlight its potential implication as a target for regulation.
更多
查看译文
关键词
Free radicals,Tobacco,Nitrate,Oxidative stress,Toxicity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要