The quest for CMB signatures of Conformal Cyclic Cosmology

arXiv (Cornell University)(2022)

引用 0|浏览13
暂无评分
摘要
Circles of low-variance and Hawking points in the Cosmic Microwave Background (CMB), resulting from black hole mergers and black hole evaporation, respectively, in a previous cycle of the universe, have been predicted as possible evidence for the Conformal Cyclic Cosmology model (CCC) introduced by R. Penrose. We present a high-resolution search for such low-variance circles in the Planck and WMAP CMB data, and introduce HawkingNet, our machine learning open-source software based on a ResNet18 algorithm, to search for Hawking points in the CMB. We find that spots consisting of a few unusually bright (high-temperature) or dark (low-temperature) pixels, erroneously lead to regions with many low-variance circles, and consequently sets of near-concentric low-variance circles, when applying the search criteria used in previous work [V.G. Gurzadyan, R. Penrose]. After removing those spots from the data, no statistically significant low-variance circles can be found. Concerning Hawking points, also no statistically significant evidence is found when using a Gaussian temperature amplitude model over 1 degree opening angle and after accounting for spots of unusual brightness. That the unusual spots in the data are themselves remnants of Hawking points is not supported by low-variance and/or low-temperature circles around them. The absence of such statistically-significant distinct features in the currently available CMB data does not disprove the CCC model, but implies that higher resolution CMB data and/or refined CCC based predictions are needed to pursue the search for CCC signatures further
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要