Hyperoside improves learning and memory deficits by amyloid β1-42 in mice through regulating synaptic calcium-permeable AMPA receptors

European Journal of Pharmacology(2022)

引用 2|浏览2
暂无评分
摘要
Alzheimer's disease (AD) is the most common degenerative disease and is indicative of dementia. The cerebral accumulation of amyloid β (Aβ), a crucial factor in AD, initiates synaptic and cognitive dysfunction. Therefore, the elevation of synaptic and cognitive functions may help manage dementia in AD. In this study, we suggest hyperoside as a synaptic function- and memory-enhancing agent. Hyperoside enhanced learning and memory in passive avoidance and object recognition tasks. Hyperoside facilitated synaptic long-term potentiation (LTP) in acute hippocampal slices. IEM-1460, a calcium-permeable amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (CP-AMPAR) antagonist, blocked the facilitation effect of hyperoside. Hyperoside also induced N-methyl-d-aspartate receptor (NMDAR)-independent LTP, which was blocked by IEM-1460, suggesting the involvement of CP-AMPARs in the synaptic effects of hyperoside-mediated LTP. PKI (a PKA inhibitor) or SQ22536 (adenylyl cyclase, an AC inhibitor) blocked hyperoside-facilitated LTP and hyperoside-induced NMDAR-independent LTP. Hyperoside-enhanced learning and memory were blocked by IEM-1460, suggesting the involvement of CP-AMPARs in the effect of hyperoside on learning and memory. Finally, hyperoside ameliorated Aβ-induced memory impairments in an AD mouse model. These results suggest that hyperoside enhances learning and memory, and this may be due to the effect of CP-AMPARs.
更多
查看译文
关键词
Alzheimer's disease,Hyperoside,Calcium permeable AMPA receptor,Long-term potentiation,Amyloid β,PKA
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要