A Global Optimization Method for Energy-Minimal UAV-Aided Data Collection over Fixed Flight Path

ICC 2022 - IEEE International Conference on Communications(2022)

引用 2|浏览10
暂无评分
摘要
This paper considers optimal resource allocation for data collection from multiple ground devices (GDs) using a rotary-wing unmanned aerial vehicle (UAV). The UAV's flight path, i.e., the sequence of moving positions, is given a priori due to requirements of e.g. patrol and inspection missions, whereas the UAV's trajectory, i.e., the path and time schedule of movement, remains dependent on its hovering positions and flying speeds along the path. To improve the spectral and energy efficiency of the GDs, the UAV employs a directional antenna and performs wireless power transfer (WPT) to the GDs before collecting data from them. We jointly optimize the UAV's flying speeds, hovering locations, and radio resource allocation (including time, bandwidth and transmit power) for minimization of the total energy consumption of the UAV required for completing data collection along the flying path. We show that given any flight path, the propulsion energy consumption of the UAV is a convex function of the flight speeds. However, due to the highly directive transmission, communication and flight of the UAV become strongly coupled and complicates the problem, e.g. the selection of the UAV's hovering points will affect both the order of serving the GDs and the antenna gain of the UAV. Moreover, nonconvexity in the flight path constraints further obscures an efficient solution to the resource allocation problem. To tackle these challenges, we propose an iterative algorithm based on the branch-and-bound (BnB) method, which can obtain the globally optimal solution when the flight path coincides with the boundary of a convex set. Simulation results show that compared with several baseline algorithms, the proposed algorithm can significantly lower the energy consumption of the UAV during data collection.
更多
查看译文
关键词
fixed flight path,global optimization method,energy-minimal,uav-aided
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要