Evaluation of the biostimulant effects of two Chlorophyta microalgae on tomato (Solanum lycopersicum)

Journal of Cleaner Production(2022)

引用 14|浏览12
暂无评分
摘要
Eukaryotic microalgae from the Chlorophyta division are used in various bio-industries due to their ability to produce high value compounds. Some of these compounds show plant biostimulant properties when applied to plants, soil or growth medium in hydroponic chambers. The first objective of this study was to evaluate if Chlamydomonas reinhardtii cc 124 and Chlorella sp. MACC-360 had biostimulant effect on Solanum lycopersicum L. The second objective was to investigate the importance of the application mode and time. The third goal was to reveal strain-specific actions of the two algae strains. Tomato plants were grown in pots layered with clay at the bottom and filled with the mixture of soil and vermiculate. In two sets of experiments the soil and plant leaves were treated with living algae and algal extract, respectively. In the first set, the culture suspension (CS) was centrifuged, the algae pellet was re-suspended in water (CCS), and this was applied weekly to soil, while algae extract (cell disrupted algae suspension – CDS) was sprayed on leaves bi-weekly. The flowering process, plant morphology, fruit features and pigment contents were analyzed. In the second set of experiments, the culture suspension per se (CS) was applied to the soil weekly and CDS was sprayed on leaves bi-weekly. Flowering kinetics, reproductive capacity and photosynthetic parameters were examined. Both algae strains increased pigment content, fruit weight and fruit diameter of tomato. Plants that received initial algae treatment at an advanced age performed better than those initially treated at a young age. Chlorella induced early flowering and fruit development while Chlamydomonas significantly delayed these milestone functions. Chlorella promoted conversion of light energy to chemical energy, while Chlamydomonas enhanced protection of photosynthetic parameters. Both strains increased leaf temperature differential as well as leaf thickness. Overall, both algae strains stimulated important agronomic-valuable functions in tomato.
更多
查看译文
关键词
Chlamydomonas,Chlorella,Biostimulant,Green algae,Flowering,Tomato
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要