Design and Research of Wireless Passive High-Temperature Sensor Based on SIW Resonance

MICROMACHINES(2022)

引用 2|浏览2
暂无评分
摘要
The temperature of advanced components in aviation and aerospace fields is difficult to obtain timely. In this study, we aimed to investigate microwave backscattering technology combined with the theory of substrate integrated waveguide and resonant cavity to design a wireless passive temperature sensor and explore its potential in this field. We employed silicon carbide and aluminum ceramic as the substrate to make sensors. The interrogation antenna was designed to test the sensor, which could completely cover the working frequency of the sensor and had good radiation characteristics. Based on the test results, the silicon carbide sensor was capable of bearing a temperature limit of about 1000 degrees C compared to the alumina sensor. From 25 degrees C to 500 degrees C, its sensitivity was 73.68 kHz/degrees C. Furthermore, the sensitivity was 440 kHz/degrees C in the range of 501 degrees C to 1000 degrees C. Moreover, we observed the surface of this sensor by using the scanning electron microscope, and the results showed that the damage to the sensor surface film structure caused by long-term high temperature is the major reason for the failure of the sensor. In conclusion, the performance of the silicon carbide sensor is superior to the alumina sensor.
更多
查看译文
关键词
substrate integrated waveguide, resonant cavity, silicon carbide, high temperature sensor, wireless passive
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要