Enhanced microbial nitrification-denitrification processes in a subtropical metropolitan river network.

Water research(2022)

引用 15|浏览10
暂无评分
摘要
Urban rivers are hotspots of regional nitrogen (N) pollution and N transformations. Previous studies have reported that the microbial community of urban rivers was different from that of natural rivers. However, how microbial community affects N transformations in the urban rivers is still unclear. In this study, we employed N nutrients-related isotope technology (includes natural-abundance isotopes survey and isotope-labeling method) and bioinformatics methods (includes 16S rRNA high-throughput sequencing and quantitative PCR analysis) to investigate the major N transformations, microbial communities as well as functional gene abundances in a metropolitan river network. Our results suggested that the bacterial community structure in the highly urbanized rivers was characterized by higher richness, less complexity and increased abundances of nitrification and denitrifying bacterium compared to those in the suburban rivers. These differences were mainly caused by high sewage discharge and N loadings. In addition, the abundances of nitrifier gene (amoA) and denitrifier genes (nirK and nirS) were significantly higher in the highly urbanized rivers (2.36 × 103, 7.43 × 107 and 2.28 × 107 copies·mL-1) than that in the suburban rivers (0.43 × 103, 2.18 × 107 and 0.99 × 107 copies·mL-1). These changes in microbes have accelerated nitrification-denitrification processes in the highly urbanized rivers as compared to those in the suburban rivers, which was evidenced by environmental isotopes and the rates of nitrification (10.52 vs. 0.03 nmol·L-1·h-1) and denitrification (83.31 vs. 22.49 nmol·g-1·h-1). Overall, this study concluded that the excess exogenous N has significantly shaped the specific aquatic bacterial communities, which had a potential for enhancing nitrification-denitrification processes in the highly urbanized river network. This study provides a further understanding of microbial N cycling in urban river ecosystems and expands the combined application of isotopic technology and bioinformatics methods in studying biogeochemical cycling.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要